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Introduction
During the design of any optical system destined to be manufactured, it is critical to define a fabrication 
and assembly budget. This budget must consider any potential compensation that will be used during the 
manufacturing process to mitigate the performance degradation introduced by fabrication variations. It is 
important to specify the best set of tolerances and compensators, as these will significantly impact the 
manufacturing costs. The complex process of defining system tolerances and compensators is often simply 
called, tolerancing. 

Some minimum tolerances are dictated by the manufacturing process. It is important to perform a 
sensitivity analysis on these tolerances to determine the as-built performance of the system. Alternatively, an 
acceptable performance degradation may drive the tolerances. An inverse sensitivity analysis determines 
the set of tolerances that achieve a specific performance degradation. Both of these analyses should consider 
the effects of permissible compensators.

Why Is Tolerancing Important?
The simple answer is cost. A design may be very expensive to manufacture if small variations in the lens 
parameters result in significant performance loss even after compensation is applied. The ideal optical system 
design minimizes production costs and meets performance requirements using achievable component 
and assembly tolerances and well-chosen post-assembly adjustments. Optical design software can help 
to make this ideal manufactured system a reality, and the tolerancing process should  
be fast, flexible, and accurate.

Tolerancing With Optical Design Software
Many optical design software packages have the ability to perform a tolerance analysis; however, the 
algorithms used for tolerancing may differ. Ideally, a tolerancing algorithm provides a combination of speed, 
accuracy, and insight into which tolerances drive system performance; unfortunately, many optical design 
packages offer tolerancing algorithms that only provide two of these three.

CODE V is a comprehensive software package offered by Synopsys for the design, analysis, tolerancing, 
and fabrication support of optical systems. CODE V is used worldwide by organizations to design a wide 
range of optical systems for a variety of products, including digital camera equipment, medical instruments, 
aerospace systems, telecommunication components, microlithographic stepper systems, and many more. 
Many of these companies and users chose CODE V for its advanced algorithms and features related 
to tolerancing.
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In addition to traditional algorithms for calculating tolerance sensitivity, CODE V 
also includes the Wavefront Differential tolerancing method that is extremely 
fast and accurate. The speed of this method enables tolerancing to be 
performed frequently throughout the design process, not just as an end-of-
the-project analysis. The Wavefront Differential tolerancing algorithm can even 
be invoked during optimization itself, allowing direct optimization for tolerance 
desensitization, including the impact of realistic compensation.

Two Traditional Approaches To Tolerancing
Finite Difference and Monte Carlo are two common tolerancing algorithms. The 
Finite Difference approach individually varies each parameter within its tolerance 
range and analyzes the resulting system performance for each tolerance. These 
individual results are statistically combined to yield a total system performance 
prediction. This method predicts performance sensitivity for each tolerance, 
which helps to identify the individual parameters that are “performance drivers.” 
To keep unnecessary cost out of a design, it is important to have tight tolerances 
only on those parameters that cause the greatest performance degradation for 
small changes. Only the most sensitive components should warrant the extra 
cost associated with tight tolerances. 

The Finite Difference method does not consider how simultaneous changes in 
multiple parameters interact; its prediction of overall performance is typically 
optimistic. The effects of multiple tolerance interactions on the system 
performance are known as cross-terms. The Finite Difference method also 
suffers from numerical precision issues when a tolerance change causes a small 
difference between two very large numbers.

The Monte Carlo approach varies all of the fabrication parameters by random 
amounts within each tolerance range and typically uses optimization to 
compensate (i.e., refocus) the system. This simulates the performance of a single 
production unit chosen at random. The analysis of this random unit constitutes 
a single Monte Carlo trial. This process is repeated many times with different 
random perturbations. An accurate statistical prediction of the probability of 
achieving a particular performance level is generated if many trials (typically 100 
to 1000) are run. Because all of the parameters are being varied at the same 
time, the Monte Carlo method accurately accounts for cross-terms. However, 
no information can be obtained from the Monte Carlo analysis about individual 
tolerance sensitivities. As such, you can accurately predict a system’s as-built 
performance, but you cannot determine the specific tolerances that are driving 
the performance, and therefore cannot select the best set of tolerances to 
minimize cost.

Both the Finite Difference and Monte Carlo tolerancing methods are 
computationally intensive, which can be slow. With the Finite Difference method, 
a system’s performance must be analyzed twice for each tolerance parameter (to 
consider the impact for both the plus and minus perturbation), and additionally 
this is done for every field and lens configuration (zoom). Thus, more complex 
systems will take longer for a tolerance analysis than simpler systems. For 
example, a triplet typically has over 50 tolerances and perhaps 3 fields resulting 
in over 300 required simulations. 

With Wavefront 
Differential Tolerancing, 
You Can:

`` Utilize the following 
performance metrics: 
RMS wavefront error, 
diffraction MTF, single 
mode fiber insertion loss 
or polarization-dependent 
loss, and Zernike wavefront 
coefficients

`` Perform a sensitivity 
analysis to the current 
tolerance set

`` Use the Inverse Sensitivity 
mode to automatically 
determine each tolerance 
within user-defined 
tolerance limits such 
that it contributes about 
equally to a specific system 
performance degradation 
for the worst case field and 
zoom position. A subset of 
tolerances can be frozen so 
that their values remain fixed

`` Use the Interactive 
Tolerancing mode 
to make changes to 
individual tolerance values 
and instantly see the 
performance impact

`` List tolerance sensitivities 
and performance 
predictions for every 
field and zoom position, 
with either common or 
independent compensation 
across field and 
zoom position

`` Assign specific 
compensators to 
specific tolerances by 
using tolerance and 
compensator labels
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Some optical design software packages utilize polynomial curve-fitting 
routines during the initial Finite Difference tolerance analysis to decrease the 
computational time required for subsequent tolerance analyses. In this case, the 
effect of changing a tolerance value can be quickly analyzed using the polynomial 
coefficients. However, this approach is useful only if tolerancing is the last step 
of the design; otherwise, the polynomials will need to be recalculated every time 
the design changes, adding to the overall time required for both design and 
tolerancing. 

In the Monte Carlo approach, the system must be analyzed for every trial. System 
complexity is less of an issue, but many trials are required to achieve an accurate 
performance prediction. Analyzing a complex system to a reasonable level of 
accuracy using either the Finite Difference or the Monte Carlo method may 
require many hours (or even days) of analysis time.

Wavefront Differential Tolerancing
The Wavefront Differential algorithm is very fast and combines the best attributes 
of both the Finite Difference and Monte Carlo methods. The Wavefront Differential 
method provides information about individual tolerance sensitivities (like the Finite 
Difference method) and a more accurate performance prediction, including the 
effect of cross-terms (like the Monte Carlo method). 

The speed of the Wavefront Differential approach is derived from the design 
of the algorithm. All of the information needed for the initial and all subsequent 
tolerance analyses is obtained from the nominal system by tracing a single group 
of rays. This single-pass approach is extremely fast, even when compared to 
curve-fitting routines. 

The algorithmic foundation for the Wavefront Differential analysis method is 
based on the work of Hopkins & Tiziani1, King2, and Matthew Rimmer3,4. The 
advanced algorithms developed by Mr. Rimmer used in CODE V’s tolerancing 
feature (TOR) were first implemented in CODE V in 1978, decades prior to any 
other commercial implementation. The CODE V Wavefront Differential algorithms 
have been continually enhanced since they were first introduced, and include 
many proprietary features and advanced capabilities not found in any other 
software package.

Assumptions Of The Wavefront Differential Method
The accuracy of the Wavefront Differential method is dependent on a few 
assumptions. Primarily, the ray optical path differences (OPDs) due to tolerance 
perturbations are assumed to vary linearly with the perturbation. Typically, this 
assumption is valid if the perturbation is small and results in a slight degradation 
of the nominal performance, which is what a designer nominally tries to achieve 
when tolerancing a system. 

Also, the Wavefront Differential method is only applicable to performance metrics 
that can be computed by analyzing the complex field at the exit pupil of the 
system. Such metrics include wavefront error, diffraction MTF, fiber coupling 
insertion loss, polarization-dependent insertion loss, and Zernike wavefront 
coefficients. 

Additionally, development of the Wavefront Differential equations requires 
knowledge of how each tolerance affects the system; CODE V’s Wavefront 
Differential tolerancing option (TOR) will analyze pre-programmed (i.e., built-
in) tolerance types, of which there are over 60. Also, new tolerance types can 
be “synthesized” by combining existing tolerances (e.g., a ball lens diameter 
tolerance can be constructed from two radii and one thickness tolerance).

Wavefront Differential 
Tolerancing 
(continued)

`` Force compensation based 
on field symmetry without 
requiring additional field 
points to be entered

`` Assign tolerances and 
compensators to a specific 
configuration of a multi-
configuration lens (i.e., a 
specific zoom position).

`` Override tolerance limits 
for each supported 
tolerance type

`` Create a new tolerance 
by grouping individual 
tolerances

`` Perform accurate 
tolerancing of double-pass 
systems or systems with 
parametric relationships 
among the constructional 
data (such as the front 
and rear radii and center 
thickness of a ball lens)

`` Predict changes in 
distortion (or calibrated 
distortion) due to tolerances

`` Compensate for 
image quality while 
simultaneously correcting 
line-of-sight errors (i.e., 
boresight correction) and 
magnification errors, due to 
tolerances

`` Define different tolerance 
probability distributions 
for different classes of 
tolerances

`` Identify the best 
compensator set from 
among all possible 
compensators using 
a singular value 
decomposition algorithm
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Finally, the tablular output for the Wavefront Differential tolerancing assumes that the overall performance 
probability has a Gaussian form, defined by a mean and sigma. This assumption is typically valid if each 
tolerance is contributing about the same to the overall performance degradation, which is what TOR’s inverse 
sensitivity analysis tries to achieve. Otherwise, the Gaussian probability assumption tends to be conservative. It is 
important to understand that the Wavefront Differential method includes cross-terms; wavefront differentials 
are computed for each tolerance and for every pair of tolerances, so these important factors are included in the 
overall predicted performance for the system. 

The fast Wavefront Differential method can be effectively used in concert with other tolerancing methods, for 
optical engineers who are accustomed to alternative algorithms. Designers often take advantage of the speed of 
the Wavefront Differential method’s inverse sensitivity analysis to quickly determine appropriate tolerances and 
compensators. Afterward, a single Monte Carlo analysis of the resulting system (consisting of a large number of 
trials) can provide assurance of the accuracy of the Wavefront Differential performance prediction. After gaining 
experience with the Wavefront Differential method, most users find that the extra Monte Carlo analysis step 
is unnecessary.

CODE V fully supports the Finite Difference and Monte Carlo tolerancing methods for systems in which the 
Wavelength Differential method’s assumptions are invalid. Table 1 lists the supported performance metrics and 
tolerance types for each of the three methods.

The applicability of CODE V’s Wavefront Differential tolerancing method to real systems is affirmed by its 
successful use within Synopsys’ Optical Engineering Services Group to define tolerances and analyze 
as-built performance for over a thousand fabricated designs. Additionally, thousands of systems have 
been successfully analyzed and fabricated by CODE V customers around the world; Wavefront Differential 
tolerancing can be a powerful feature in your optical design toolkit.  

Table 1: Feature summary of CODE V’s primary tolerancing methods

Tolerancing
Algorithm

CODE V
Command

Supported  
Performance

Metrics

Supported  
Tolerances

Comments

Wavefront
Differential

TOR • RMS Wavefront  
Error

• Diffraction MTF
• Fiber Coupling 

Efficiency
• Polarization 

Dependent Loss
• Zernike 

Coefficients-
based error 
function

CODE V pre-
programmed 
tolerances (e.g., 
radius, thickness, 
wedge, barrel tilt, 
test plate fit (in 
fringes), etc.)

• Very fast
• Very accurate for tolerances that result in a 

small degradation in system performance 
(includes cross-terms)

• Provides individual tolerance sensitivities and 
accurate performance prediction

• Both inverse sensitivity and sensitivity 
analyses are supported

• Supports optional distortion analysis, 
boresight correction, and an SVD 
compensator algorithm

Finite
Difference

TOLFDIF
(macro)

Any quantity that
CODE V can 
compute

Most CODE V 
preprogrammed
tolerances &
macro-based 
user-defined
tolerances

• Can be slow depending on number of 
tolerances, fields, zooms, and type of 
performance metric analyzed

• Provides accurate individual tolerance 
sensitivities, particularly for larger tolerances

• Performance summary is optimistic because 
cross-terms are not included

• Method assumes that the performance 
variation is quadratic with tolerance, 
which may not be valid for the requested 
performance metric

• Sensitivity analysis only

Monte Carlo TOLMONTE
(macro)

Any quantity that
CODE V can 
compute

Most CODE V 
preprogrammed
tolerances and
macro-based 
user-defined
tolerances

• Can be slow depending on the number of 
trials requested and type of performance 
metric analyzed

• Provides accurate performance prediction (if 
many trials are requested)

• No information about individual tolerance 
sensitivities

• Sensitivity analysis only
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Example System: F/2.5 Double Gauss Objective
To illustrate these different tolerancing methods, consider an F/2.5, 14° half-FOV Double Gauss lens, as shown in 
Figure 1. The comparison uses the set of CODE V default tolerances which, for this lens system, is 52 centered 
tolerances (i.e., thickness, index, power, or irregularity) and 16 decentered tolerances (i.e., wedge, element 
tilt, or element decenter). The radial and tangential MTF at 15 cycles/mm across the field of view is used as 
the performance metric for the tolerance analysis. While CODE V’s fast Wavefront Differential tolerancing and 
user-tolerancing features allow for multiple compensators, for this example the only allowed compensation is a 
longitudinal shift of the image plane to achieve maximum on-axis performance. This type of compensator is often 
called refocus.

Table 2 shows the tolerance set, based on first running the Wavefront Differential tolerancing method in inverse 
sensitivity mode. In this mode, TOR tries to set the tolerance values so that each results in identical performance 
degradation at the worst case field and zoom, after compensation. More sensitive parameters are assigned 
tighter tolerances, and less sensitive ones, looser tolerances. However, the tolerance values must remain 
between realistic default or user-specified tolerance limits.

Figure 1: F/2.5 Double Gauss Lens

Table 2: Tolerance set determined with Inverse Sensitivity Tolerancing 

C E N T E R E D 
T O L E R A N C E S 

           F/2.5 Double Gauss 
  --------------------------------------------------------------------------------------------- 
                       RADIUS      FRINGES                  THICKNESS              INDEX   V-NO 
  SUR       RADIUS       TOL       POW/IRR       THICKNESS     TOL     GLASS        TOL    (%)  
 

    1     48.57123     0.0200     2.0/ 0.50        6.00000   0.02000  NSSK2      0.00050  0.80 
    2    131.57415     0.6000     2.0/ 0.50        0.10000   0.02000 
    3     39.95081     0.0200     2.0/ 0.50       14.00000   0.02000  NSK2       0.00020  0.80 
    4   -142.35727     6.7000    12.0/ 3.00        5.00000   0.02000  F5         0.00020  0.50 
    5     23.51612     0.0200     2.0/ 0.50        4.06422   0.04000 
    6                                             22.19286   0.04000 
    7    -24.31769     0.0200     2.0/ 0.50        4.00000   0.02000  F5         0.00050  0.30 
    8   -426.08911    73.0000    12.0/ 3.00       10.00000   0.02000  NSK16      0.00050  0.50 
    9    -34.42842     0.0200     6.0/ 1.50        0.10000   0.10000 
   10    149.62579     0.5000     8.0/ 2.00       10.00000   0.10000  NSK16      0.00150  0.50 
   11    -76.35573     0.1000    10.0/ 2.50       57.81453 
   12                                             -0.70092 
 
                                               D E C E N T E R E D 
                                              T O L E R A N C E S 
 
          F/2.5 Double Gauss 
  -------------------------------------------------------------------------------------------------------- 
  ELEMENT          FRONT       BACK           ELEMENT WEDGE         ELEMENT TILT          EL. DEC/ROLL(R) 
    NO.           RADIUS      RADIUS         TIR     ARC MIN       TIR     ARC MIN       TIR     mm. 
 

     1          48.57123   131.57415       0.0040      0.3       0.0123      1.0       0.0112   0.0200 
     2          39.95081  -142.35727       0.0020      0.2                             0.0231   0.0200 (R) 
    2- 3        39.95081    23.51612                             0.0079      1.0       0.0029   0.0200 
     3        -142.35727    23.51612       0.0020      0.3 
     4         -24.31769  -426.08911       0.0060      0.8                             0.0211   0.0200 (R) 
    4- 5       -24.31769   -34.42842                             0.0137      1.7       0.0001   0.0200 
     5        -426.08911   -34.42842       0.0080      0.8 
     6         149.62579   -76.35573       0.0400      3.2       0.0131      1.0       0.0176   0.0200 
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For this analysis, all scalar and cylindrical parameters are assumed to have an equal probability of having any value 
within the plus and minus tolerance limits. Two-dimensional decentered tolerances use a Gaussian probability 
distribution. Additionally, the tolerance probability distribution can be modified in CODE V for different classes of 
tolerances. The system will be analyzed for the following five field positions: on-axis, +/-70% field, and +/- full field. 
Symmetric fields are used to access both radial and tangential MTF. If field-averaged compensation is desired, or 
decenter compensators are present, the off-axis fields should be duplicated for the Monte Carlo analysis. TOR can 
handle the field symmetric compensation algorithmically, without duplicating fields, by means of an input control.

Using these settings, three tolerance analyses were performed using the described algorithms. Table 3 compares 
the relative speed of the tolerancing methods, and is based on execution for a single processor with the same 
number of rays in the ray grid for each analysis. 

The Wavefront Differential and Finite Difference tolerancing methods provide information about individual tolerance 
sensitivities. This information allows the designer to determine the tolerance drivers for the system. As an example, 
Table 4 shows the change in performance resulting from a perturbation of a symmetrical tolerance that can be 
compensated with refocus (i.e., the radius of surface 7) and a decenter tolerance that cannot be compensated 
with refocus, for both methods. The compensation motion is analytically calculated with the Wavefront Differential 
method and determined by optimization in the Finite Difference method. Both selected tolerances are among the 
top 5 most significant tolerances for this system (out of 68 total).

Tolerancing Method Computation Time for an Intel® Core™ i7 2.7GHz CPU

Wavefront Differential (TOR) 2.3 seconds

Finite Difference (TOLFDIF) 41 seconds (18x TOR)

Monte Carlo—5000 trials (TOLMONTE) 70 minutes, 20 seconds (1835x TOR)

Table 3: Speed comparison of tolerancing methods

Table 4: Single tolerance comparisons between Wavefront Differential and Finite Difference methods

 

Single Tolerance Comparison 

(Delta Radius of surface 7, ± 0.020mm) 

Wavefront Differential Results 

Field Change in MTF at 15 cycles/mm 

 + Tolerance - Tolerance 

1 (On-axis) +0.016 -0.018 

2 (+10 deg, 
tan) 

+0.024 -0.027 

3 (+14 deg, 
tan) 

-0.014 +0.007 

4 (-10 deg, 
rad) 

+0.003 -0.005 

5 (-14 deg, 
rad) 

-0.015 +0.013 

Compensator (refocus) Motion for best 
axial focus = +0.0673 mm 

Finite Difference Results 

Field Change in MTF at 15 cycles/mm 

 + Tolerance - Tolerance 

1 (On-axis) +0.016 -0.017 

2 (+10 deg, 
tan) 

+0.029 -0.033 

3 (+14 deg, 
tan) 

-0.016 +0.008 

4 (-10 deg, 
rad) 

-0.001 -0.002 

5 (-14 deg, 
rad) 

-0.017 +0.015 

Compensator (refocus) Motion for best 
axial focus = +0.0692 mm 

 

Single Tolerance Comparison 

(Y Decenter of surface 3-5, ± 0.020 mm) 

Wavefront Differential Results 

Field Change in MTF at 15 cycles/mm 

 + Tolerance - Tolerance 

1 (On-axis) -0.001 -0.001 

2 (+10 deg, 
tan) 

+0.033 -0.049 

3 (+14 deg, 
tan) 

-0.021 +0.006 

4 (-10 deg, 
rad) 

+0.018 -0.023 

5 (-14 deg, 
rad) 

+0.010 -0.017 

Compensator (refocus) Motion for best 
axial focus = +0.0000 mm 

Finite Difference Results 

Field Change in MTF at 15 cycles/mm 

 + Tolerance - Tolerance 

1 (On-axis) -0.002 -0.002 

2 (+10 deg, 
tan) 

+0.033 -0.049 

3 (+14 deg, 
tan) 

-0.020 +0.006 

4 (-10 deg, 
rad) 

+0.018 -0.023 

5 (-14 deg, 
rad) 

+0.010 -0.016 

Compensator (refocus) Motion for best 
axial focus = +0.0000 mm 

 
 

Mean+2  Comp. Motion for all 
tolerances using the Wavefront 

Differential method = 

 
 

±0.4110 mm   

 

2  Comp. Motion for all tolerances 
using the Finite Differences method = 

 

±0.4169 mm 
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Notice that the difference in the predicted MTF degradation across field for the two methods is within 0.006 MTF 
for the compensated tolerance. This small difference is not unexpected, since the compensation solution will be 
slightly different between the two approaches. The predicted performance degradation matches almost exactly 
(within 0.001 MTF) for the uncompensated, decenter tolerance. The predicted refocus for the radius tolerance is 
within 2 µM for the two methods. Also, the predicted mean plus 2σ compensator motion range for all tolerances 
correlates very well for the two methods (within 7 µM). The predicted performance degradation due to any of the 
individual tolerances is similar to these representative examples.

All three methods (Wavefront Differential, Finite Difference, and Monte Carlo) predict the cumulative probability 
performance, when all tolerances are applied. However, the prediction from the Finite Difference method tends 
to be optimistic, since it does not include the impact of cross-terms (i.e., how the individual tolerances interact to 
impact performance). Both the Wavefront Differential and Monte Carlo methods include cross-terms.

Table 5 compares the cumulative probability performance summary for the Wavefront Differential and Monte Carlo 
methods. It lists the MTF degradation at the 50% (mean), 84.1% (mean plus 1σ), 97.7% (mean+2σ), and 99.9% 
(mean+3σ) probability levels. The values in the table represent maximum degradation in MTF for a given field for 
a certain percentage of built systems, assuming a random application of tolerances within their tolerance limits 
on each parameter. Users can also control the distribution of the random perturbations (e.g., uniform probability 

Table 5: Cumulative performance summary for three tolerancing methods

 

Performance Summary Comparison 

Change in MTF  at 15 cycles/mm 

Cumulative Probability 

Wavefront Differential Results 

Field 50% 84.1% 97.7% 99.9% 

1 -0.0135 -0.0394 -0.0653 -0.0912 

2 -0.0164 -0.0676 -0.1189 -0.1701 

3 -0.0186 -0.0489 -0.0792 -0.1096 

4 -0.0190 -0.0518 -0.0846 -0.1174 

5 -0.0164 -0.0458 -0.0752 -0.1045 

 

 

 

Monte Carlo Results (5000 trials) 

Field 50% 84.1% 97.7% 99.9% 

1 -0.0115 -0.0373 -0.0657 -0.0978 

2 -0.0064 -0.0623 -0.1311 -0.2000 

3 -0.0145 -0.0482 -0.0974 -0.1701 

4 -0.0172 -0.0503 -0.0887 -0.1412 

5 -0.0121 -0.0484 -0.1003 -0.1620 

Figure 2: Wavefront Differential cumulative  
probability chart

Figure 3: Monte Carlo cumulative  
probability chart
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between tolerance limits, a Gaussian probability between the tolerance limits, etc.). Once again, fields 2 and 3 
indicate tangential MTF performance, fields 4 and 5 the radial MTF, and compensation is for best axial focus. 
The results between the Wavefront Differential and Monte Carlo methods correlate well, with the predicted MTF 
degradation due to tolerances within 0.01 for both methods through “mean + σ” probability (84%) for all fields, and 
within 0.03 for the “mean + 3σ” probability (98%) at all the inner fields. While the Monte Carlo results become more 
pessimistic for the outer fields at the “mean + 3σ” probability (i.e., difference ~0.06), the average difference across 
all listed fields and probabilities is within 0.014 in MTF.

Each of the three CODE V tolerancing methods discussed in this paper will create a cumulative probability 
performance chart. These charts show the performance at any probability level. Figure 2 is the cumulative 
probability plot generated by the Wavefront Differential tolerancing method (TOR). Figure 3 is the cumulative 
probability chart generated by the Monte Carlo method (TOLMONTE). Like the tabular data, they compare 
very well.

Directly Optimizing for Tolerance Desensitization
CODE V’s optimization capabilities have long been recognized as the best in the industry for achieving optimum 
nominal performance for systems ranging from the simple to the very complex. The speed of the Wavefront 
Differential tolerancing approach supports its inclusion as a separate, optional error function component in 
optimization (the Reduce Tolerance Sensitivity, or SAB error function). CODE V’s primary optimization algorithm 
is based on a Damped Least Squares (DLS) method, which works best for systems with many variables and many 
relevant aberrations to be reduced by those variables. The Wavefront Differential tolerancing approach allows 
aberrations based on multivariate equations to be created for every tolerance at every field and every zoom. This is 
an ideal problem for DLS!

Typically, when using SAB, you choose the same tolerance values for common parameter types, often based on 
tolerance classes such as commercial, precision, high precision, etc. The general goal is to optimize for a design 
form that can meet the as-built specification with the least-expensive tolerance set. SAB is best used early in 
the design phase and can also be effectively used during global optimization. Some pre-SAB optimization may 
be required, since a system with very poor nominal performance is generally insensitive to tolerance variations. 
SAB should be used on systems with “reasonable” nominal performance that will show degradation with 
“reasonable” tolerances.

Figure 4: F/3.55 inverted telephoto before tolerance desensitization optimization
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To illustrate the improvement possible using SAB, we will compare the final as-built performance for an inverted 
telephoto lens optimized without and with SAB. Figure 4 shows the best optimized result, without using SAB.

We will apply the “Select” class of tolerances which are achievable by a large number of optical fabrication 
vendors5 and also include a defocus compensator. The tolerance values are shown in Table 6.

The SAB optimization results are sensitive to the weight chosen for the SAB component. In general, the use of 
SAB with any weight will improve the as-built performance compared to the pre-SAB result; however, to find 
the weight that provides the maximum improvement, an iterative approach works best. The results shown in 
Table 7 for the “mean + 2σ” as-built RMS wavefront performance are based on using a macro to perform several 
optimizations (each using a different SAB component weight for all fields) and then to select the best result. The 
nominal (design) performance for the post-SAB result is typically degraded compared to the pre-SAB nominal 
performance; however, in this case, the nominal performance is essentially the same (on average) for both designs. 
The best solution reduced the as-built RMS wavefront error by 18% compared to optimizing without SAB.

Table 6: “Select”5 Tolerance set

                                                C E N T E R E D 
                                              T O L E R A N C E S 
 

           F/3.55 Inverted Telephoto 
  ---------------------------------------------------------------------------------------------- 
                       RADIUS      FRINGES                  THICKNESS              INDEX   V-NO     
  SUR       RADIUS       TOL       POW/IRR       THICKNESS     TOL     GLASS        TOL    (%)     

    1     82.52700     0.0417     1.0/ 0.25        3.62536   0.05000  627.586    0.00050  0.50 
    2    552.75182     2.0127     1.0/ 0.25        0.10000   0.05000 
    3     70.28017     0.0412     1.0/ 0.25        4.24208   0.05000  669.523    0.00050  0.50 
    4     14.03202     0.0036     1.0/ 0.25       20.96646   0.05000 
    5     25.18458     0.0262     1.0/ 0.25        4.32311   0.05000  680.339    0.00050  0.50 
    6    -92.32481     0.4040     1.0/ 0.25        2.91221   0.05000 
    7                                              0.67259   0.05000 
    8     53.77045     0.2177     1.0/ 0.25        2.39888   0.05000  646.556    0.00050  0.50 
    9    -23.74002     0.0446     1.0/ 0.25        0.89584   0.05000 
   10    -15.73622     0.0212     1.0/ 0.25        3.03014   0.05000  755.275    0.00050  0.50 
   11     28.32816     0.0670     1.0/ 0.25        0.78824   0.05000 
   12    -67.78803     0.3832     1.0/ 0.25        2.57758   0.05000  692.496    0.00050  0.50 
   13    -13.97934     0.0133     1.0/ 0.25       37.99347 
   14                                             -0.49333 
  
                                              D E C E N T E R E D 
                                              T O L E R A N C E S 
 

           F/3.55 Inverted Telephoto 
  -------------------------------------------------------------------------------------------------------- 
  ELEMENT          FRONT       BACK           ELEMENT WEDGE         ELEMENT TILT          EL. DEC/ROLL(R) 
    NO.           RADIUS      RADIUS         TIR     ARC MIN       TIR     ARC MIN       TIR     mm. 
 

     1          82.52700   552.75182       0.0130      1.1       0.0040      0.3       0.0107   0.0250 
     2          70.28017    14.03202       0.0130      1.9       0.0024      0.3       0.0299   0.0250 
     3          25.18458   -92.32481       0.0130      3.0       0.0015      0.3       0.0198   0.0250 
     4          53.77045   -23.74002       0.0130      3.9       0.0011      0.3       0.0175   0.0250 
     5         -15.73622    28.32816       0.0130      4.1       0.0011      0.3       0.0274   0.0250 
     6         -67.78803   -13.97934       0.0130      4.0       0.0011      0.3       0.0180   0.0250 
 

              RMS Wavefront Error (waves @550 nm) 

                Pre-SAB Result      Post-SAB Result 

    RELATIVE   DESIGN  DESIGN       DESIGN  DESIGN    

      FIELD            + TOL                + TOL 

                                                 

  0.00, 0.00   0.3497  0.7098      0.3886  0.6000     

  0.00, 0.71   0.6242  1.0293      0.7370  0.9410     

  0.00, 1.00   0.8054  1.3309      0.6493  0.9862     

Average =>     0.5931  1.0233      0.5916  0.8424 (18% ) 

Table 7: Performance comparison for lens optimized without and with the Tolerance  
Desensitization Error Function (SAB)



07/15.RP.CS6185.

Synopsys, Inc. • 690 East Middlefield Road • Mountain View, CA 94043 • www.synopsys.com

©2015 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is 
available at http://www.synopsys.com/copyright.html . All other names mentioned herein are trademarks or registered trademarks of their respective owners.

The final lens form, shown in Figure 5, is only slightly different than the system optimized without SAB  
(Figure 4), but much less sensitive to same set of manufacturing and assembly errors!

This paper demonstrates how CODE V’s advanced tolerancing features provide outstanding speed, accuracy, 
and flexibility, which ultimately help to maintain optical system performance while reducing costs during product 
development and throughout the product life cycle.
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Figure 5: F/3.55 inverted telephoto after tolerance desensitization optimization


